Zeros of Sections of the Zeta Function. II

By Robert Spira*

1. Recapitulation. Paul Turán proved theorems connecting the locations of zeros of the Dirichlet polynomials

$$
\begin{equation*}
\zeta_{N}(s)=\sum_{n=1}^{N} n^{-s} \tag{1}
\end{equation*}
$$

with the Riemann hypothesis. Let $s=\sigma+i t$. One such theorem is that if all the zeros of every $\zeta_{N}(s)$ had real parts $\sigma \leqq 1$, then the Riemann hypothesis would be true. Unfortunately, this very simple condition, which could perhaps have been worked with in an inductive fashion, was shown by Haselgrove [1] to fail infinitely often. In part I of this paper (Spira [2]), a description was given of a calculation of zeros of $\zeta_{N}(s)$ for various N up to 10^{10}. No zero with $\sigma>1$ was found.

In this concluding part, we apply in Section 2 generalizations of basic theorems of Bohr to $\zeta_{N}(s)$, and find g.l.b. $\left|\zeta_{N}(s)\right|$ for $\sigma \geqq 1$ and $N \leqq 5$. In Section 3 we discuss a confirmation of Haselgrove's proof, and report on related calculations. In Section 4, we describe machine proofs that $\zeta_{N}(s)$ has no zeros with $\sigma \geqq 1$ for $N \leqq 9$, and proofs of the existence of such zeros for a variety of small N starting with $N=19$. Finally, we discuss our attempts at finding such zeros.
2. Applications of Bohr's Theorems. Let p_{j} be the j th prime, so $p_{1}=2$. For $n>$ 1 , let $r_{n, j}$ be the highest power of p_{j} dividing n, and let q_{n} be the index of the largest prime dividing n. We then can write (1) as

$$
\begin{equation*}
\zeta_{N}(s)=\sum_{n=1}^{N} n^{-\sigma} \exp \left(-i t\left(r_{n, 1} \log 2+r_{n, 2} \log 3+\cdots+r_{n, q_{n}} \log p_{q_{n}}\right)\right) \tag{2}
\end{equation*}
$$

where we interpret the sum in parentheses as 0 when $n=1$. Introducing the new variables $x_{j}=t \log p_{j}$, we now define the companion function of $\zeta_{N}(s)$:

$$
\begin{equation*}
F_{N}=F_{N}\left(\sigma, x_{1}, x_{2}, \cdots\right)=\sum_{n=1}^{N} n^{-\sigma} \exp \left(-i\left(r_{n, 1} x_{1}+r_{n, 2} x_{2}+\cdots+r_{n, q_{n}} x_{q_{n}}\right)\right) \tag{3}
\end{equation*}
$$

Since the $\log p_{j}$ are linearly independent over the rationals, and the $r_{n, j}$ are integers, we can apply generalizations (Spira [3]) of theorems of Bohr [4]. We can conclude first of all the set of values of $\zeta_{N}(s)$ for $\sigma \in(a, \infty)$ and $t \in(-\infty, \infty)$ is identical with the set of values of $F_{N}\left(\sigma, x_{1}, \cdots\right)$ where $\sigma \in(a, \infty)$ and each x_{j} runs independently over $[0,2 \pi)$. Thus, taking $a=1, \zeta_{N}(s)=0$ for some $\sigma>1$ and some t if and only if $F_{N}\left(\sigma, x_{1}, \cdots\right)=0$ for some (possibly different) $\sigma>1$, and some values of the variables x_{1}, x_{2}, \cdots. We remark also that if $\zeta_{N}(s)$ has one zero with $\sigma>1$, it has infinitely many (Spira [3]). Secondly, we can conclude that the values of

[^0]$F_{N}\left(\sigma, x_{1}, \cdots\right)$ where σ runs over a closed interval, and the x_{j} 's run independently over [$0,2 \pi$), form a closed set. Thus, for the σ-interval [1, 2], the distance of this set to the origin is a well-defined constant, d_{N}.

Now, from the last two lines of p. 542 of I , we have that for $\sigma>1$,

$$
\begin{equation*}
\left|\zeta_{N}(s)\right| \geqq 1-2^{-\sigma}(\sigma+1) /(\sigma-1) \tag{4}
\end{equation*}
$$

and this last function increases with σ. At $\sigma=2$, its value is $1 / 4$, so for $\sigma \geqq 2$, $\left|\zeta_{N}(s)\right| \geqq 1 / 4$. Hence, for $\sigma>2,\left|F_{N}\right| \geqq 1 / 4$, and if $d_{N} \leqq 1 / 4, d_{N}$ is the minimum distance of F_{N} to the origin for all $\sigma \geqq 1$. For $5 \leqq N \leqq 50$ it turns out that $d_{N} \leqq$ $1 / 4$, but it is also true that for $N \leqq 4, d_{N}$ is the minimum distance for all $\sigma \geqq 1$.

To discuss these $N \leqq 4$ cases, and for the sequel, we define:

$$
\begin{equation*}
\pi_{N}=\text { the set of primes } p \text { satisfying } N / 2<p \leqq N \tag{5}
\end{equation*}
$$

$$
\begin{align*}
\zeta_{N}^{*}(s) & =\sum_{n=1 ; n \notin \pi_{N}}^{N} n^{-s}, \quad \pi_{N}(s)=\sum_{n \in \pi_{N}} n^{-s}, \tag{6}\\
F_{N}^{*} & =F_{N}^{*}\left(\sigma, x_{1}, \cdots\right)=\text { the companion function of } \zeta_{N}^{*}(s), \tag{7}\\
P_{N} & =P_{N}\left(\sigma_{1}, x_{1}, \cdots\right)=\text { the companion function of } \pi_{N}(s) . \tag{8}
\end{align*}
$$

We have $\zeta_{N}(s)=\zeta_{N}{ }^{*}(s)+\pi_{N}(s), F_{N}=F_{N}{ }^{*}+P_{N}$. Note that σ is the only variable $F_{N}{ }^{*}$ and P_{N} have in common. The first four $\zeta_{N}{ }^{*}(s)$ are $1,1,1,1+2^{-s}+4^{-s}$. In general, we have

$$
\begin{align*}
& \zeta_{N}{ }^{*}(s)=\zeta_{N-1}^{*}(s) \text { if } N \text { is a prime } \\
& \zeta_{N}^{*}(s)=\zeta_{N-1}^{*}(s)+(N / 2)^{-s}+N^{-s} \text { if } N \text { is twice a prime }, \tag{9}\\
& \zeta_{N}^{*}(s)=\zeta_{N-1}^{*}(s)+N^{-s} \text { otherwise }
\end{align*}
$$

and there are similar equations for $F_{N}{ }^{*}$. It is clear that the variables in P_{N} can be chosen so that P_{N} is a vector in any assigned direction of length $\sum_{p \in \pi_{N}} p^{-\sigma}$. We avoid the general question of whether values of σ, x_{1}, \cdots which minimize $\left|F_{N}{ }^{*}\right|$ also minimize $\left|F_{N}\right|$ after suitable selection of the variables in P_{N}. For $N \leqq 5$, this turns out to be true, since the minima for $\sigma \geqq 1$ of $\left|F_{N}{ }^{*}\right|$ lie at the extreme $\sigma=1$. The remarks above on the relations of the sets of values of $\zeta_{N}(s)$ and F_{N} also carry over to the functions $\zeta_{N}{ }^{*}(s)$ and $F_{N}{ }^{*}$.

For $N=1$, it is trivial that $d_{N}=1$. A short calculation shows that for $N=2$, we obtain a minimum $d_{2}=1 / 2$ at $\sigma=1, x_{1}=\pi$, and for $N=3, d_{3}=1 / 6$ and is attained at $\sigma=1, x_{1}=x_{2}=\pi$. It is also easy to see that these three minima hold for $\sigma \geqq 1$. We sketch the calculation of d_{4}.

We consider first $F_{4}{ }^{*}$. We have $\left|F_{4}{ }^{*}\right| \geqq 1-2^{-\sigma}-4^{-\sigma}$, which is >0 for $\sigma \geqq 1$. Thus, for some σ in $[1,3]$ and for some x_{1} in $[0,2 \pi),\left|F_{4}{ }^{*}\right|$ takes on a positive minimum. In finding such σ and x_{1}, we can study $g\left(\sigma, x_{1}\right)=\left|F_{4}{ }^{*}\right|^{2}$ instead of $\left|F_{4}{ }^{*}\right|$. At a minimum, we must have $\partial g / \partial x_{1}=0$, (since g is periodic of period 2π in x_{1}, we do not have to consider extreme values in that variable). A short calculation gives

$$
\begin{align*}
g\left(\sigma, x_{1}\right) & =1+2^{-2 \sigma}+4^{-2 \sigma}+2^{1-\sigma}\left[1+4^{-\sigma}\right] \cos x_{1}+2 \cdot 4^{-\sigma} \cos 2 x_{1}, \tag{10}\\
\partial g / \partial x_{1} & =-2^{1-\sigma}\left(\sin x_{1}\right)\left[1+4^{-\sigma}+2^{2-\sigma} \cos x_{1}\right] . \tag{11}
\end{align*}
$$

Thus, $\partial g / \partial x_{1}=0$ if and only if $x_{1}=0$ or π, or $\cos x_{1}=-\left(2^{\sigma}+2^{-\sigma}\right) / 4$. For $x_{1}=\pi$,
setting $x=2^{-\sigma}$, we obtain $g(\sigma, \pi)=\left(x^{2}-x+1\right)^{2}$. It is easily seen that $x^{2}-x+1$ >0, and has its minimum at $x=1 / 2$ or $\sigma=1$, where $\left|F_{4}^{*}\right|=3 / 4$.

For $x_{1}=0$, we obtain $g(\sigma, 0)=\left(x^{2}+x+1\right)^{2}$, which is greater than $\left(x^{2}-x+1\right)^{2}$ $(=g(\sigma, \pi))$ if $x>0$, which we can assume as $x=2^{-\sigma}$. Thus, the minimum cannot be attained for $x_{1}=0$.

In the final case, using $\cos 2 x_{1}=2 \cos ^{2} x_{1}-1$, if $\cos x_{1}=-\left(2^{\sigma}+2^{-\sigma}\right) / 4$, we obtain $\cos 2 x_{1}=\left(4^{\sigma}-6+4^{-\sigma}\right) / 8$ and $g\left(\sigma, x_{1}\right)=\frac{3}{4}\left(1-4^{-\sigma}\right)^{2}$, which is least at $\sigma=1$, and indeed gives the least possible $\left|F_{4}{ }^{*}\right|$ of $3 \sqrt{ } 3 / 8$, at $\cos x_{1}=-5 / 8$. This gives $d_{4}=(9 \sqrt{ }-8) / 24$ and $d_{5}=(45 \sqrt{ }-64) / 120$, where we choose x_{2} and x_{3} so that the vectors $\exp \left(-i x_{2}\right)$ and $\exp \left(-i x_{3}\right)$ point opposite to $F_{4}{ }^{*}(1, \arccos (-5 / 8))$.

If $F_{N}\left(\sigma, x_{1}, \cdots\right)=0$, and if the appropriate Jacobian does not vanish, we can solve the equation for σ, and thus obtain a σ interval in which F_{N} vanishes. The zeros of $\zeta_{N}(s)$ will have real parts dense in this interval. The empirical results suggest the conjecture that to each $\zeta_{N}(s)$ there is a single such interval, though it could possibly arise from overlapping $F_{N} \sigma$-intervals.

If we take F as the companion function of a general Dirichlet series, it is not clear what we should do about such solvability conditions, since F will have infinitely many variables.
3. Calculations Related to Haselgrove's. The Dirichlet polynomial

$$
\begin{equation*}
L_{N}(s)=\sum_{n=1}^{N} \frac{\lambda(n)}{n^{s}} \tag{12}
\end{equation*}
$$

where $\lambda(n)$ is Liouville's function, is equivalent in the sense of Bohr [4] to $\zeta_{N}(s)$, and hence assumes the same set of values in any half plane $\sigma>\sigma_{0}$. If s is real and large, then $L_{N}(s)$ is near 1. Thus, if $L_{N}(1)<0$, then there would be a real root of $L_{N}(s)$ larger than 1 , and hence also a root of $\zeta_{N}(s)$ with $\sigma>1$.

The author found that $L_{N}(1)>0$ for $N \leqq 824,000$, and found $L_{293}(1)=$ $.0051122775, L_{1000}(1)=.0289948068$, values slightly different from those appearing in Turán [6]. The lowest value obtained was $L_{96862}=.00011996$. R. Sherman Lehman's [5] values of $L_{N}(0)$ for $N=200,000(200,000) 800,000$ were verified.

To study $L_{N}(1)$ further, one may use analytic expressions, derived by the calculus of residues (Haselgrove [1], Lehman [5]). Indeed, setting

$$
\begin{equation*}
L_{1}(x)=\sum_{n \leqq x} \frac{\lambda(n)}{n} \tag{13}
\end{equation*}
$$

the expression

$$
\begin{equation*}
B_{T}(u)=\frac{-1}{\zeta\left(\frac{1}{2}\right)}+\sum_{\left|\gamma_{n}\right|<T} \frac{\zeta\left(2 \rho_{n}\right)}{\left(\rho_{n}-1\right) \zeta^{\prime}\left(\rho_{n}\right)} \exp \left(i \gamma_{n} u\right), \tag{14}
\end{equation*}
$$

where $\rho_{n}=\frac{1}{2}+i \gamma_{n}$ are roots of $\zeta(s)$, under various unproved hypotheses, can be shown to represent $e^{u / 2} L_{1}\left(e^{u}\right)$, with some blurring. The focusing improves as T increases. For example, for $T=200$ and $u \leqq 2$, one can readily see rather sharp changes (without a Gibbs effect) as $L_{1}(x)$ makes a step. Lehman [5] used a function similar to (14) to successfully guess where $L(x)=\sum_{n} \leq_{x} \lambda(n)$ changed sign.

An expression the same as (14) but with the factor ($1-\gamma_{n} / T$) inside the sum was used by Haselgrove to show that $L_{1}(x)$ is negative infinitely often. We designate
this sum by $B_{T}{ }^{*}(u)$. For corresponding sums for $L(x)$ we use the notation $A_{T}(u)$ and $A_{T}{ }^{*}(u)$, as used by Lehman [5]. Finally, by $C_{T}(u)$ and $C_{T}{ }^{*}(u)$ we mean the corresponding sums for the function $M(x)=\sum_{n} \leqq_{x} \mu(n)$, where $\mu(n)$ is the Möbius function. We have

$$
\begin{equation*}
C_{T}(u)=\sum_{\left|\gamma_{n}\right|<T} \frac{\exp \left(i \gamma_{n} u\right)}{\rho_{n} \zeta^{\prime}\left(\rho_{n}\right)} \tag{15}
\end{equation*}
$$

which represents, hopefully, $e^{-u / 2} M\left(e^{u}\right)$. Formulas for $A_{T}(u)$ and $A_{T}{ }^{*}(u)$ can be found in Lehman [5], and for $B_{T}{ }^{*}(u)$ and $C_{T}{ }^{*}(u)$ in Haselgrove [1].

All six of these functions were calculated in double precision for $T=100, u=$ $0(.01) 500$, and for $T=200,500$, and 1000 in selected ranges. The coefficients for these functions were calculated in double precision, calculating first improved γ_{n} from the 6D values in Haselgrove and Miller [7]. We first discuss the tables in Haselgrove [1]. Write $\alpha_{n}=\zeta\left(2 \rho_{n}\right) / \rho_{n} \zeta^{\prime}\left(\rho_{n}\right)$. In Table I, the γ_{n} are correct to within 3 units in the 10th significant figure. For the first six $\left|\alpha_{n}\right|$, terminal digits $19,8,5,3,2,993$, were obtained rather than $23,6,8,5,4,878$. For $n=9,15,18,34,48$ the terminal digits $4,4,6,6,3$ were obtained rather than $5,3,5,7,4$. The quantity $\left(p h \alpha_{n}\right) / \pi$ was not checked. The values of $A_{1000}^{*}(u)$ in Table II were confirmed within 1 unit except for the five values starting with 831.837, which are two units low. Also, the value at 831.857 was found to be -.06320 . In Lehman's [5] paper the value $A_{1000}(814.492)$ was found to have terminal digit 0 , and $A_{1000}(831.847)$ was found to be .0049448 .

Two new places were found where $A_{T}{ }^{*}(u)>0: A_{1000}^{*}(310.8276)=.0109$, $A_{1000}^{*}(384.690)=.0316$. High maxima also occur at $u=33.495,44.591$ and 214.404.

For $L_{1}(x)$, the author found that $B_{1000}^{*}(853.853)=-.0321$ and $B_{1000}^{*}(996.980)=$ -.0450 and $B_{1000}^{*}(996.981)=-.0457$, confirming Haselgrove's proof. It was also found that $B_{1000}^{*}(171.4938)=-.0009$ and $B_{1000}^{*}(331.9602)=-.0170$, giving two new places where this function is negative. Low minima occur at $u=43.897,54.624$, 124.843 , 188.830, and 437.758 .

To disprove Mertens hypothesis it would be sufficient to find u and T such that $\left|C_{T^{*}}(u)\right|>1$. No such values were found. Table I gives places where $\left|C_{1000}^{*}(u)\right|$ rises above .5 .

Table I. Approximate Values for $e^{-u / 2} M\left(e^{u}\right)$

u	$C_{1000}^{*}(u)$	u	$C_{1000}^{*}(u)$
22.7730	+.5003	441.5100	+.5145
43.8965	-.5199	480.6430	+.5069
97.5260	+.5355	814.4910	+.5061
310.8258	+.5301	853.852	-.6027

4. Machine proofs. We first describe the proofs that $\zeta_{N}(s) \neq 0$ for $\sigma \geqq 1, N \leqq 9$. The idea of such a proof is, for one variable, based on the formulas

$$
\begin{equation*}
\left|f\left(x_{0}+h\right)\right| \geqq\left|f\left(x_{0}\right)\right|-\max |h| \cdot \max \left|f^{\prime}(\xi)\right| \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\left|f\left(x_{0}+h\right)\right| \geqq\left|f\left(x_{0}\right)\right|-\max |h|\left|f^{\prime}\left(x_{0}\right)\right|-\left(\max |h|^{2} / 2!\right) \max \left|f^{\prime \prime}(\xi)\right| \tag{17}
\end{equation*}
$$

which are easily derivable from the Taylor's expansion under suitable restrictions on f. Thus, from formula (16), if $\left|f^{\prime}(\xi)\right|$ is suitably bounded, and $f\left(x_{0}\right) \neq 0$, we can conclude that $f(x) \neq 0$ for a small interval about x_{0}. Formula (17) is useful when $|f(x)|$ has a small minimum, as in the cases we consider. We then get some help from $\left|f^{\prime}\left(x_{0}\right)\right|$ being small near the minimum, and from the $|h|^{2}$ in the next term. These formulas easily generalize to the case of f being a real or complex function of several real variables. Roundoff also must be taken into account.

In our particular case, we can take advantage of the special nature of our functions F_{N}, and consider only the variables appearing in $F_{N}{ }^{*}$. If we take the variables σ, x_{1}, \cdots, to lie in a cube C, we have at any point in C,

$$
\begin{equation*}
\left|F_{N}\right| \geqq\left|F_{N}{ }^{*}\right|-\left|P_{N}\right| \geqq \underset{C}{\text { g.l.b. }}\left|F_{N} *\right|-\underset{C}{\text { l.u.b. }}\left|P_{N}\right| . \tag{18}
\end{equation*}
$$

Thus, $\left|F_{N}\right|>0$ in C provided g.l.b.c $\left|F_{N}{ }^{*}\right|>$ l.u b.c $\left|P_{N}\right|\left(=\sum_{p} \in_{\pi_{N}} p^{-\min \sigma}\right)$. Now we can apply formulas of the type (16) or (17). Write $F_{N}{ }^{*}=u+i v$. A formula corresponding to (16) is

$$
\left|F_{N} *\left(\sigma+h, x_{1}+h_{1}, \cdots\right)\right|
$$

$$
\begin{align*}
& \geqq\left|F_{N}^{*}\left(\sigma, x_{1}, \cdots\right)\right|-\max |h|\left[\max \left|\frac{\partial u}{\partial \sigma}\right|+\max \left|\frac{\partial v}{\partial \sigma}\right|\right] \tag{19}\\
& \quad-\max \left|h_{j}\right|\left[\sum_{i}\left(\max \left|\frac{\partial u}{\partial x_{i}}\right|+\max \left|\frac{\partial v}{\partial x_{i}}\right|\right)\right]
\end{align*}
$$

and one corresponding to (17) is

$$
\left|F_{N}^{*}\left(\sigma+h, x_{1}+h_{1}, \cdots\right)\right| \geqq\left|F_{N}^{*}\left(\sigma, x_{1}, \cdots\right)\right|
$$

$$
-\max |h|\left[\left|\frac{\partial u}{\partial \sigma}\left(\sigma, x_{1}, \cdots\right)+i \frac{\partial v}{\partial \sigma}\left(\sigma, x_{1}, \cdots\right)\right|\right]
$$

$$
-\max \left|h_{j}\right|\left[\sum_{i}\left|\frac{\partial u}{\partial x_{i}}\left(\sigma, x_{1}, \cdots\right)+i \frac{\partial v}{\partial x_{i}}\left(\sigma, x_{1}, \cdots\right)\right|\right]
$$

$$
-\frac{\max |h|^{2}}{2!}\left[\max \left|\frac{\partial^{2} u}{\partial \sigma^{2}}\right|+\max \left|\frac{\partial^{2} v}{\partial \sigma^{2}}\right|\right]
$$

$$
-\frac{\max \left|h_{j}{ }^{2}\right|}{2!}\left[\sum_{i, j}\left(\max \left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right|+\max \left|\frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right|\right)\right]
$$

$$
-\max \left|h h_{j}\right|\left[\sum_{i}\left(\max \left|\frac{\partial^{2} u}{\partial \sigma \partial x_{i}}\right|+\max \left|\frac{\partial^{2} v}{\partial \sigma \partial x_{i}}\right|\right)\right] .
$$

It was not possible to avoid using (20). The expressions in (20) can be simplified. We have, writing $\pi_{N}{ }^{*}$ as $[1, N]-\pi_{N}$,

$$
\begin{equation*}
\max \left|\frac{\partial u}{\partial \sigma}\right|+\max \left|\frac{\partial v}{\partial \sigma}\right| \leqq 2 \sum_{n \in \pi N^{*}}(\log n) n^{-\min \sigma} \tag{21}
\end{equation*}
$$

and using the notation of (2),

$$
\begin{equation*}
\sum_{i}\left(\max \left|\frac{\partial u}{\partial x_{i}}\right|+\max \left|\frac{\partial v}{\partial x_{i}}\right|\right) \leqq 2 \sum_{n \in \pi_{N^{*}}}\left(r_{n, 1}+r_{n, 2}+\cdots+r_{n, q_{n}}\right) n^{-\min \sigma} \tag{22}
\end{equation*}
$$

For formula (20) we can use

$$
\begin{gather*}
\max \left|\frac{\partial^{2} u}{\partial \sigma^{2}}\right|+\max \left|\frac{\partial^{2} v}{\partial \sigma^{2}}\right| \leqq 2 \sum_{n \in \pi N^{*}}(\log n)^{2} n^{-\min \sigma} \tag{23}\\
\sum_{\imath, j}\left(\max \left|\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right|+\max \left|\frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right|\right) \leqq 2 \sum_{n \in \pi N^{*}}\left(r_{n, 1}+\cdots+r_{n, q n}\right)^{2} n^{-\min \sigma} \tag{24}\\
\sum_{i}\left(\max \left|\frac{\partial^{2} u}{\partial \sigma \partial x_{i}}\right|+\max \left|\frac{\partial^{2} v}{\partial \sigma \partial x_{i}}\right|\right) \leqq 2 \sum_{n \in \pi N^{*}}(\log n)\left(r_{n, 1}+\cdots+r_{n, q_{n}}\right) n^{-\min \sigma}
\end{gather*}
$$

To save computation, the machine proof was attempted simultaneously for those N 's for which the $F_{N}{ }^{*}$ have the same number of variables x_{j}. The process of proof starts with the cube $\sigma:[1,2], x_{j}:[0,2 \pi], j=1, \cdots$. One could limit one of the x_{j} 's to $[0, \pi]$, since $\left|F_{N}\left(\sigma, x_{1}, x_{2}, \cdots\right)\right|=\left|F_{N}\left(\sigma, 2 \pi-x_{1}, 2 \pi-x_{2}, \cdots\right)\right|$. One breaks the cube into smaller cubes, and checks by (19) and then (20) to see if $\left|F_{N}\right|>0$ throughout each smaller cube. The smaller cubes not satisfying this are further refined. The final program used integer pair coordinates for the x_{j} 's, $(m, n)=2 m \pi / n$, where n was chosen a power of 2 . All the cubes of a size were examined together, so that the sines and cosines could be computed just once for a given set of cubes. Also, the coordinates of $\min \left|F_{N}\right|$ were saved. If one attempts to use condition (19) alone, the number of cubes rises to an impractical level.

Table II gives results of the proofs for $N=6$ to 9 at several stages. The roundoff leeway was taken as 10^{-5}. Column 1 contains the σ-width of the cubes. Column 2 has the number of division of 2π for the x_{j} edge length. Column 3 gives the σ-coordinate of the center of the cube with minimum $\left|F_{N}\right|$, which turned out to be the same for $N=6$ to 9 . The next three columns give $\min \left|F_{6}\right|$ and the integer first coordinates of x_{1} and x_{2} where this minimum was attained. The second coordinate is twice the value in column 3 , (since we are calculating at the centers of cubes, the program needs a mesh half the edge). For example, in the first row, we are considering cubes of σ width .25 , and x_{j} width $2 \pi / 16$. The min $\left|F_{6}\right|$ is .28384 and is attained at $x_{1}=11 \cdot(2 \pi / 32), x_{2}=15 \cdot(2 \pi / 32)$. The next nine columns give corresponding data for $N=7,8,9$. The last two columns give the letters Y and N according to whether a proof was obtained or not. The letters are in order corresponding to $N=6$ to 9 . The first of these columns gives the proof results obtained using (19) above, and the second, the results obtained using (20) also. The results in the $N=8$ columns indicate that the proof first sought out a secondary minimum, which was later calculated, and then finally found a cube where there was a lower minimum as the mesh refined. Each set of cubes was processed completely to find min $\left|F_{N}\right|$, rejecting when possible, using the current $\min \left|F_{N}\right|$, and then a second pass made using the final values of $\min \left|F_{N}\right|$ to reject further cubes. The program also saved cubes where there was a possibility of lower $\min \left|F_{N}\right|$ within the cube. The total run time was less than 20 minutes.

The $\min \left|F_{N}\right|$ in the table were recalculated in double precision, and a separate confirmatory calculation was performed along $\sigma=1$ which found x_{1} and x_{2} which minimized $\left|F_{N}\left(1, x_{1}, x_{2}\right)\right|$ for a mesh of $2 \pi / 650$. Values of x_{1}, x_{2} which gave $\left|F_{N}\left(1, x_{1}, x_{2}\right)\right|$ slightly greater than the minimum were also saved, and studied, and
Table II
Proof Data, $N=6,7,8,9$

σ mesh	x mesh	σ min	$N=6$		$N=7$		$N=8$		$N=9$		Pr. 1	Pr. 2
. 250	16	1.125	. 28384	$11 \quad 15$. 17182	$11 \quad 15$. 23154	$15 \quad 15$. 25615	$15 \quad 11$	NNNN	NNNN
. 125	32	1.0625	. 23256	$21 \quad 31$. 10607	2131	. 17370	3131	. 20056	$31 \quad 21$	NNNN	YNYY
. 0625	64	1.03125	. 20289	$43 \quad 61$. 06846	$43 \quad 61$. 14455	$63 \quad 63$. 16898	$61 \quad 43$	NNN	$Y Y Y Y$
. 03125	128	1.015625	. 18778	85121	. 04920	85121	. 12941	71123	. 15287	12185	YNYY	YYYY

Local Minima of $\left|F_{N}{ }^{*}\right|$ Table III $\sigma=1$ and Angles where Attained

N	local minimum	$\sum_{p \in \pi_{N} p^{-1}}^{\text {less }}$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
1	1	$+\quad 1$									
2	1	$+\quad 1 / 2$									
3	1	$+\quad 1 / 6$									
4	$3 \sqrt{ } / 8$	+ . 316186^{*}	$2.245928 \dagger$								
5		+ .116186*									
6	. 372759	+ . 172759	2.091870	2.953272							
7		+ . 029902									
8	. 452582	+ . 109724	1.721394	3.044474							
9	. 479230	+ . 136372	2.986152	2.062967							
10	. 286430	+ . 143573	1.739896	2.496772	3.168891						
11		+. 052664									
12	. 330873	+ . 097107	1.633311	2.376010	3.218477						
13		+ . 020184									
14	. 173630	+. . 005798	1.586010	2.404622	3.250068	3.250068					
15	. 183411	+. 015578	1.626395	2.278784	2.974448	3.283475					
16	. 232361	+.064529	1.471382	2.331302	3.030376	3.321327					

36	. 1457	$-.0171$	1.2611	1.8813	2.5547	2.9571	3.3053	3.5597	3.5592		
37		$-.0441$									
38	. 0798	$-.0573$	1.2463	1.8848	2.5610	2.9645	3.3136	3.5698	3.5716	3.5702	
39	. 0743	-. 0629	1.2608	1.8496	2.5738	2.9724	3.3166	3.3138	3.5631	3.5669	
40	. 0910	-. 0462	1.2219	1.8684	2.5191	2.9883	3.3300	3.3288	3.5819	3.5822	
41		-. 0706									
42	. 1018	-. 0599	1.2195	1.8416	2.5328	2.8826	3.3419	3.3426	3.5926	3.5940	
43		$-.0831$									
44	. 1044	-. 0805	1.1909	1.8551	2.5440	2.8990	3.1698	3.3567	3.6064	3.6061	
45	. 1173	- . 0675	1.2064	1.8015	2.4921	2.9096	3.1784	3.3622	3.6074	3.6076	
46	. 0622	-. 0792	1.2010	1.8018	2.4845	2.9079	3.1822	3.3727	3.6229	3.6238	3.6259
47		-. 0805									
48	. 0793	- . 0834	1.1624	1.7952	2.5120	2.9342	3.1987	3.3798	3.6215	3.6205	3.6191
49	. 0808	$-.0819$	1.1836	1.8184	2.5186	2.7110	3.1941	3.3758	3.6193	3.6229	3.6235
50	. 0906	-. 0721	1. 1840	1.8268	2.3905	2.7145	3.2001	3.3875	3.6373	3.6392	3.6405

other checking computations were performed.
It would not be difficult now to repeat the computational proof.
Minima of $\left|F_{10}^{*}\right|$ and $\left|F_{12}^{*}\right|$ were also sought with a mesh of $2 \pi / 150$, and of $\left|F_{14}^{*}\right|$ through $\left|F_{21}^{*}\right|$ with a mesh of $2 \pi / 50$. Local minima were then sought by a minimum search program, using starting values obtained from these initial searches. The searching program simply stepped each variable by a quantity h, halving h, for a number of times, as the minimum was found with mesh h. For $N>21$, further minima were also sought, using as starting values the quantities x_{j} at which $\left|F_{N-1}^{*}\right|$ was a minimum, taking π for the initial value of any new variable.

Table III gives the results of these computations. The x_{j} are given in radians. The quantities for $N \leqq 35$ should be accurate to one unit in the last place, as they were computed in double precision. For $35<N \leqq 50$, the quantities should be correct to within 3 units in the last place. It is not claimed that the local minima are the true absolute minima of $\left|F_{N}{ }^{*}\right|$.

Since $\left|F_{N}{ }^{*}\right| \rightarrow 1$ and $\sum_{p \in \pi_{N}} p^{-\sigma} \rightarrow 0$ as $\sigma \rightarrow \infty$, if we find values of the variables x_{1}, \cdots, so that $\left|F_{N}{ }^{*}\left(1, x_{1}, \cdots\right)\right|-\sum_{p \in_{\pi_{N}}} 1 / p<0$, then $F_{N}\left(\sigma, x_{1}, \cdots\right)$ has a root with $\sigma>1$. Thus, from Table III, for $N=19,23$ to 27 and 29 to $50, F_{N}$ has roots with $\sigma>1$.

It is possible that such searches for minima could be speeded by using a gradient method. If this were so, one could write a general program for computing successive minima of the $\left|F_{N}{ }^{*}\right|$ and study whether this situation of zeros for $\zeta_{N}(s)$ for $N \geqq 29$ continues to hold. We remark that it follows from Rosser and Schoenfeld's [8] inequalities for $\sum_{p \leq x} 1 / p$ that $\sum_{p} \in_{\pi_{N}} 1 / p$ is approximately $\log 2 / \log N$ and tends to zero as $N \rightarrow \infty$.

To find a zero of $\zeta_{19}(s)$ with $\sigma>1$, one can seek t for which $t \log p_{j} \equiv x_{j}+\epsilon_{j}$ $(\bmod 2 \pi), j=1, \cdots, 4$, where the x_{j} have the values of Table III for $N=19$ and ϵ_{j} is small. For $j=1$, we can make $\epsilon_{1}=0$ by choosing $t=\left(x_{1}+2 k \pi\right) / \log 2, k=0$, $\pm 1, \pm 2, \cdots$. Then for each k we can check if $t \log p_{j} \equiv x_{j}(\bmod 2 \pi)$ within ϵ_{j}, for $j=2,3,4$, where we preassign the ϵ_{j} 's. If one accumulated a sufficiently large number of such cases, and if $11^{-s}, 13^{-s}, 17^{-s}$ and 19^{-s} are randomly pointed, one could hope to find a case of a zero of $\zeta_{19}(s)$ beyond $\sigma=1$. Efforts along these lines produced the zero of $\zeta_{23}(s) .9705+i 10716133.0062$, which has real part somewhat beyond that of the lowest zero $.9325+i 1.6975$.

The calculations were performed on an IBM 7040 at the University of Tennessee Computing Center, which was aided by grants NSF-G13581 and NSF-GP4046.
Department of Mathematics
University of Tennessee
Knoxville, Tennessee

1. C. B. Haselgrove, "Disproof of a conjecture of Pólya," Mathematika, v. 5, 1958, pp. 141145. MR 21 \#3391.
2. R. Spira, "Zeros of sections of the zeta function. I," Math. Comp., v. 20, 1966, pp. 542-550.
3. R. Spira, "Sets of values of general Dirichlet series," Duke Math.J. (To appear.)
4. H. Bонr, "Zur Theorie der allgemeinen Dirichletschen Reihen," Math. Ann., v. 79, 1919, pp. 136-156.
5. R. S. Lehman, "On Liouville's functions," Math. Comp., v. 14, 1960, pp. 311-320. MR 22 \#10955.
6. P. Turán, "On some approximative Dirichlet-polynomials in the theory of the zeta function of Riemann," Danske Vid. Selsk. Mat.-Fys. Medd., v. 24, no. 17, 1948, pp. 3-26. MR 10, 286.
7. C. B. Haselgrove \& J. C. P. Miller, Tables of the Riemann Zeta Function, Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, New York, 1960. MR 22 \#8679.

8; J. B. Rosser \& L. Schoenfeld, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 64-94. MR 25 \#1139.

[^0]: Received February 13, 1967.

 * Present address: Michigan State University, East Lansing, Michigan.

